24 resultados para DP microspheres, Porosity, PLGA modification, Drug release

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Vascular healing of intracoronary stents has been shown to be delayed in drug-eluting stents (DES) due to the cytotoxic compounds on the stent surface that prevent stent ingrowth and endothelialization. The lack of endothelialization explains the occurrence of late and very late stent thrombosis in DES. MATERIALS AND METHODS: In 11 house swines (body weight 38-45 kg), 3 stents were implanted randomly into the 3 large epicardial coronary arteries, namely a bare-metal stent (BMS), a sirolimus-eluting stent with slow-release (SES) and a SES with extended-release (SESXR). Stent length was 18 mm, and stent diameter 3 mm. All stents were of identical design. Animals were followed for 3 (n = 3), 7 (n = 4) and 14 (n = 4) days, respectively. One animal died before implantation due to hyperthermia. On the day of explantation, the animals were euthanized and endothelialization was tested by scanning electron microscopy after drying and sputtering the samples. Endothelial coverage was determined semiquantitatively by 2 observers. RESULTS: Endothelialization was more rapid with BMS and SESXR than SES at 3 and 14 days. At 7 days there were no significant differences between the 2 SES. CONCLUSIONS: Endothelialization of intracoronary stents is faster with BMS and SESXR at 3 days than with SES. These differences persist at 14 days, suggesting delayed vascular healing with the slow-release SES.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

First-generation drug-eluting stents (DES) with controlled release of sirolimus or paclitaxel from durable polymers compared with bare-metal stents have been consistently shown to reduce the risk of repeat revascularization procedures due to restenosis. The superior efficacy was found across a wide range of patients and lesion subsets and persisted up to 5 years whereas similar outcomes have been observed in terms of death and myocardial infarction. Newer generation DES have been developed with the goal to further improve upon the safety profile of first-generation DES while maintaining efficacy. These platforms include DES with improved and more biocompatible durable polymers, DES using bioabsorbable polymers for drug release, DES with polymer-free drug release, and fully bioabsorbable DES. Newer generation DES with durable polymers such as zotarolimus-eluting or everolimus-eluting XIENCE V stents have been directly compared with first-generation DES. Most recent results of large scale clinical trials are encouraging in terms of similar or increased efficacy while improving safety by reducing the rates of myocardial infarctions and stent thrombosis. DES using biodegradable polymers for drug release represent the next technological modification and preliminary results are favorable and demonstrate similar angiographic and clinical efficacy as first-generation DES, but only longer term follow-up and investigation in larger patient cohorts will determine whether their use is associated with improved long-term safety. Fully bioabsorbable stents represent another innovative approach. Whether this innovative concept will enter into clinical routine remains yet to be determined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Drug-eluting stents (DES) have reduced the risk of repeat revascularization procedures by 50-70% compared with bare metal stents across a wide range of lesion and patients subsets. Stent thrombosis is a rare but devastating adverse event, which results in abrupt closure of the treated artery with the incumbent risk of sudden death or myocardial infarction. Although stent thrombosis has been recognized as a shortcoming of coronary artery stents since there inception, very late stent thrombosis occurring more than one year after stent implantation emerged as a new entity complicating the use of DES. The mechanisms leading to very late ST are complex and only incompletely understood. Delayed healing and incomplete re-endothelialization emerged as prevailing mechanism of thrombosis in autopsy studies. Various components of DES may give rise to very late stent thrombosis, notably the polymers used for controlled drug-release. Newer generation DES attempt to address these concerns by aiming at improved vascular healing while maintaining potent neointimal suppression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antibody-drug conjugates (ADCs) have emerged as a promising class of anticancer agents, combining the specificity of antibodies for tumor targeting and the destructive potential of highly potent drugs as payload. An essential component of these immunoconjugates is a bifunctional linker capable of reacting with the antibody and the payload to assemble a functional entity. Linker design is fundamental, as it must provide high stability in the circulation to prevent premature drug release, but be capable of releasing the active drug inside the target cell upon receptor-mediated endocytosis. Although ADCs have demonstrated an increased therapeutic window, compared to conventional chemotherapy in recent clinical trials, therapeutic success rates are still far from optimal. To explore other regimes of half-life variation and drug conjugation stoichiometries, it is necessary to investigate additional binding proteins which offer access to a wide range of formats, all with molecularly defined drug conjugation. Here, we delineate recent progress with site-specific and biorthogonal conjugation chemistries, and discuss alternative, biophysically more stable protein scaffolds like Designed Ankyrin Repeat Proteins (DARPins), which may provide such additional engineering opportunities for drug conjugates with improved pharmacological performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives This study sought to investigate safety and efficacy of biolimus-eluting stents (BES) with biodegradable polymer as compared with sirolimus-eluting stents (SES) with durable polymer through 2 years of follow-up. Background BES with a biodegradable polymer provide similar efficacy and safety as SES with a durable polymer at 9 months. Clinical outcomes beyond the period of biodegradation of the polymer used for drug release and after discontinuation of dual antiplatelet therapy are of particular interest. Methods A total of 1,707 patients were randomized to unrestricted use of BES (n = 857) or SES (n = 850) in an all-comers patient population. Results At 2 years, BES remained noninferior compared with SES for the primary endpoint, which was a composite of cardiac death, myocardial infarction, or clinically indicated target vessel revascularization (BES 12.8% vs. SES 15.2%, hazard ratio [HR]: 0.84, 95% confidence interval [CI]: 0.65 to 1.08, pnoninferiority < 0.0001, psuperiority = 0.18). Rates of cardiac death (3.2% vs. 3.9%, HR: 0.81, 95% CI: 0.49 to 1.35, p = 0.42), myocardial infarction (6.3% vs. 5.6%, HR: 1.12, 95% CI: 0.76 to 1.65, p = 0.56), and clinically indicated target vessel revascularization (7.5% vs. 8.6%, HR: 0.86, 95% CI: 0.62 to 1.20, p = 0.38) were similar for BES and SES. The rate of definite stent thrombosis through 2 years was 2.2% for BES and 2.5% for SES (p = 0.73). For the period between 1 and 2 years, event rates for definite stent thrombosis were 0.2% for BES and 0.5% for SES (p = 0.42). After discontinuation of dual antiplatelet therapy, no very late definite stent thrombosis occurred in the BES group. Conclusions At 2 years of follow-up, the unrestricted use of BES with a biodegradable polymer maintained a similar safety and efficacy profile as SES with a durable polymer. (Limus Eluted From a Durable Versus Erodable Stent Coating [LEADERS]; NCT00389220)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Compared with bare metal stents (BMS), early generation drug-eluting stents (DES) reduce the risk of revascularisation in patients with ST-elevation myocardial infarction (STEMI) at the expense of an increased risk of very late stent thrombosis (ST). Durable polymer coatings for controlled drug release have been identified as a potential trigger for these late adverse events and this has led to the development of newer generation DES with durable and biodegradable polymer surface coatings with improved biocompatibility. In a recent all-comers trial, biolimus-eluting stents with a biodegradable polymer surface coating were found to reduce the risk of very late ST by 80% compared with sirolimus-eluting stents with durable polymer, which also translated into a lower risk of cardiac death and myocardial infarction (MI) beyond one year.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Refinements in stent design affecting strut thickness, surface polymer, and drug release have improved clinical outcomes of drug-eluting stents. We aimed to compare the safety and efficacy of a novel, ultrathin strut cobalt-chromium stent releasing sirolimus from a biodegradable polymer with a thin strut durable polymer everolimus-eluting stent. METHODS We did a randomised, single-blind, non-inferiority trial with minimum exclusion criteria at nine hospitals in Switzerland. We randomly assigned (1:1) patients aged 18 years or older with chronic stable coronary artery disease or acute coronary syndromes undergoing percutaneous coronary intervention to treatment with biodegradable polymer sirolimus-eluting stents or durable polymer everolimus-eluting stents. Randomisation was via a central web-based system and stratified by centre and presence of ST segment elevation myocardial infarction. Patients and outcome assessors were masked to treatment allocation, but treating physicians were not. The primary endpoint, target lesion failure, was a composite of cardiac death, target vessel myocardial infarction, and clinically-indicated target lesion revascularisation at 12 months. A margin of 3·5% was defined for non-inferiority of the biodegradable polymer sirolimus-eluting stent compared with the durable polymer everolimus-eluting stent. Analysis was by intention to treat. The trial is registered with ClinicalTrials.gov, number NCT01443104. FINDINGS Between Feb 24, 2012, and May 22, 2013, we randomly assigned 2119 patients with 3139 lesions to treatment with sirolimus-eluting stents (1063 patients, 1594 lesions) or everolimus-eluting stents (1056 patients, 1545 lesions). 407 (19%) patients presented with ST-segment elevation myocardial infarction. Target lesion failure with biodegradable polymer sirolimus-eluting stents (69 cases; 6·5%) was non-inferior to durable polymer everolimus-eluting stents (70 cases; 6·6%) at 12 months (absolute risk difference -0·14%, upper limit of one-sided 95% CI 1·97%, p for non-inferiority <0·0004). No significant differences were noted in rates of definite stent thrombosis (9 [0·9%] vs 4 [0·4%], rate ratio [RR] 2·26, 95% CI 0·70-7·33, p=0·16). In pre-specified stratified analyses of the primary endpoint, biodegradable polymer sirolimus-eluting stents were associated with improved outcome compared with durable polymer everolimus-eluting stents in the subgroup of patients with ST-segment elevation myocardial infarction (7 [3·3%] vs 17 [8·7%], RR 0·38, 95% CI 0·16-0·91, p=0·024, p for interaction=0·014). INTERPRETATION In a patient population with minimum exclusion criteria and high adherence to dual antiplatelet therapy, biodegradable polymer sirolimus-eluting stents were non-inferior to durable polymer everolimus-eluting stents for the combined safety and efficacy outcome target lesion failure at 12 months. The noted benefit in the subgroup of patients with ST-segment elevation myocardial infarction needs further study. FUNDING Clinical Trials Unit, University of Bern, and Biotronik, Bülach, Switzerland.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A wirelessly controlled magnetic microrobot has been proposed to diagnose and treat pathologies in the posterior segment of the human eye. The robot consists of a magnetic CoNi platform with a conformal coating of functional polymers. Electrodeposition has been the preferred method to fabricate and to functionalize the microrobot. Poly(pyrrole), a widely studied intrinsically conductive polymer has been investigated as a biocompatible coating to reduce biofouling, and as a coating that can release incorporated drugs on demand. The mechanism of redox cycling has been investigated to reduce the stiction of NIH 3T3 fibroblasts onto poly(pyrrole) surfaces. To demonstrate triggered drug release, Rhodamine B has been incorporated into the Ppy matrix as a model drug. Rapid Rhodamine B release is obtained when eddy current losses are induced by alternating magnetic fields on the CoNi substrates underneath these films.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVES: The disease alveolar echinococcosis (AE), caused by the larval stage of the cestode Echinococcus multilocularis, is fatal if treatment is unsuccessful. Current treatment options are, at best, parasitostatic, and involve taking benzimidazoles (albendazole, mebendazole) for the whole of a patient's life. In conjunction with the recent development of optimized procedures for E. multilocularis metacestode cultivation, we aimed to develop a rapid and reliable drug screening test, which enables efficient screening of a large number of compounds in a relatively short time frame. METHODS: Metacestodes were treated in vitro with albendazole, the nitro-thiazole nitazoxanide and 29 nitazoxanide derivatives. The resulting leakage of phosphoglucose isomerase (PGI) activity into the medium supernatant was measured and provided an indication of compound efficacy. RESULTS: We show that upon in vitro culture of E. multilocularis metacestodes in the presence of active drugs such as albendazole, the nitro-thiazole nitazoxanide and 30 different nitazoxanide derivatives, the activity of PGI in culture supernatants increased. The increase in PGI activity correlated with the progressive degeneration and destruction of metacestode tissue in a time- and concentration-dependent manner, which allowed us to perform a structure-activity relationship analysis on the thiazolide compounds used in this study. CONCLUSIONS: The assay presented here is inexpensive, rapid, can be used in 24- and 96-well formats and will serve as an ideal tool for first-round in vitro tests on the efficacy of large numbers of antiparasitic compounds.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: The most prevalent drug hypersensitivity reactions are T-cell mediated. The only established in vitro test for detecting T-cell sensitization to drugs is the lymphocyte transformation test, which is of limited practicability. To find an alternative in vitro method to detect drug-sensitized T cells, we screened the in vitro secretion of 17 cytokines/chemokines by peripheral blood mononuclear cells (PBMC) of patients with well-documented drug allergies, in order to identify the most promising cytokines/chemokines for detection of T-cell sensitization to drugs. METHODS: Peripheral blood mononuclear cell of 10 patients, five allergic to beta-lactams and five to sulfanilamides, and of five healthy controls were incubated for 3 days with the drug antigen. Cytokine concentrations were measured in the supernatants using commercially available 17-plex bead-based immunoassay kits. RESULTS: Among the 17 cytokines/chemokines analysed, interleukin-2 (IL-2), IL-5, IL-13 and interferon-gamma (IFN-gamma) secretion in response to the drugs were significantly increased in patients when compared with healthy controls. No difference in cytokine secretion patterns between sulfonamide- and beta-lactam-reactive PBMC could be observed. The secretion of other cytokines/chemokines showed a high variability among patients. CONCLUSION: The measurement of IL-2, IL-5, IL-13 or IFN-gamma or a combination thereof might be a useful in vitro tool for detection of T-cell sensitization to drugs. Secretion of these cytokines seems independent of the type of drug antigen and the phenotype of the drug reaction. A study including a higher number of patients and controls will be needed to determine the exact sensitivity and specificity of this test.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Cytotoxic cells are involved in most forms of drug-induced skin diseases. Till now, no in vitro test addressed this aspect of drug-allergic responses. Our report evaluates whether drug-induced cytotoxic cells can be detected in peripheral blood of nonacute patients with different forms of drug hypersensitivity, and also whether in vitro detection of these cells could be helpful in drug-allergy diagnosis. METHODS: GranzymeB enzyme-linked immunosorbent spot-forming (ELISPOT) and cell surface expression of the degranulation marker CD107a were evaluated on peripheral blood mononuclear cells from 12 drug-allergic patients in remission state and 16 drug-exposed healthy controls. RESULTS: In 10/12 allergic patients culprit but not irrelevant drug elicited granzymeB release after 48-72 h stimulation. It was clearly positive in patients with high proliferative response to the drug, measured in lymphocyte transformation tests. In patients, who showed moderate or low proliferation and low drug-response in granzymeB ELISPOT, overnight preincubation with interleukin (IL)-7/IL-15 enhanced drug-specific granzymeB release and allowed to clearly identify the offending agent. CD107a staining was positive on CD4+/CD3+, CD8+/CD3+ T cells as well as CD56+/CD3- natural killer cells. None of the drug-exposed healthy donors reacted to the tested drugs and allergic patients reacted only to the offending, but not to tolerated drugs. CONCLUSION: GranzymeB ELISPOT is a highly specific in vitro method to detect drug-reacting cytotoxic cells in peripheral blood of drug-allergic patients even several years after disease manifestation. Together with IL-7/IL-15 preincubation, it may be helpful in indentifying the offending drug even in some patients with weak proliferative drug-response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ever since the first percutaneous transluminal angioplasty (PTA) was carried out in Switzerland in 1977, restenosis remains a major drawback of this minimally invasive treatment intervention. Numerous attempts to increase vessel patency after PTA have included systemic medications and endovascular brachytherapy, but these techniques have not met our expectations in preventing restenosis. Nitinol stents have been shown to reduce rates of restenosis and target lesion revascularization in patients undergoing endovascular treatment of long femoropopliteal obstructions. Despite further technical refinements in nitinol stent technology, restenosis occurs in approximately every third patient undergoing femoropopliteal stenting. Similarly, initial clinical trials with drug-eluting stents have failed to indicate restenosis inhibition in femoropopliteal segment. Unfortunately, restenosis rates after below-the-knee PTA and stenting have been reported to be even higher than those following femoropopliteal revascularization. Current concepts for the prevention and treatment of restenosis after PTA or stenting include the sustained release of antiproliferative paclitaxel into the vessel wall. Drug eluting balloons are a promising, novel technology aimed at inhibiting restenosis after PTA. Its clinical efficacy in reducing restenosis has already been proven for coronary arteries as well as for the femoropopliteal segment. The purpose of this article is to review the clinical utility of drug-eluting balloons for lower limb endovascular interventions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Epothilones are bacterial macrolides with potent microtubule-stabilizing and antiproliferative activity, which have served as successful lead structures for the discovery of several clinical candidates for cancer treatment. Overall, seven epothilone-type agents have been advanced to clinical evaluation in humans so far and one of these has been approved by the FDA in 2007 for clinical use in breast cancer patients. Notwithstanding these impressive numbers, however, the structural diversity represented by the collection of epothilone analogs that have been (or still are) investigated clinically is rather limited and their individual structures show little divergence from the original natural product leads. In contrast, we have elaborated a series of epothilone-derived macro-lactones, whose overall structural features significantly deviate from those of the natural epothilone scaffold and thus define new structural families of microtubule-stabilizing agents. Key elements of our hypermodification strategy are the change of the natural epoxide geometry from cis to trans, the incorporation of conformationally constrained side chains, the removal of the C(3)-hydroxyl group, and the replacement of C(12) with nitrogen. The latter modification leads to aza-macrolides that may be described as 'non-natural natural products'.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Boron is one of the trace elements in the human body which plays an important role in bone growth. Porous mesopore bioactive glass (MBG) scaffolds are proposed as potential bone regeneration materials due to their excellent bioactivity and drug-delivery ability. The aims of the present study were to develop boron-containing MBG (B-MBG) scaffolds by sol-gel method and to evaluate the effect of boron on the physiochemistry of B-MBG scaffolds and the response of osteoblasts to these scaffolds. Furthermore, the effect of dexamethasone (DEX) delivery in B-MBG scaffold system was investigated on the proliferation, differentiation and bone-related gene expression of osteoblasts. The composition, microstructure and mesopore properties (specific surface area, nano-pore volume and nano-pore distribution) of B-MBG scaffolds have been characterized. The effect of boron contents and large-pore porosity on the loading and release of DEX in B-MBG scaffolds were also investigated. The results have shown that the incorporation of boron into MBG scaffolds slightly decreases the specific surface area and pore volume, but maintains well-ordered mesopore structure and high surface area and nano-pore volume compared to non-mesopore bioactive glass. Boron contents in MBG scaffolds did not influence the nano-pore size distribution or the loading and release of DEX. B-MBG scaffolds have the ability to maintain a sustained release of DEX in a long-term span. Incorporating boron into MBG glass scaffolds led to a controllable release of boron ions and significantly improved the proliferation and bone-related gene expression (Col I and Runx2) of osteoblasts. Furthermore, the sustained release of DEX from B-MBG scaffolds significantly enhanced alkaline phosphatase (ALP) activity and gene expressions (Col I, Runx2, ALP and BSP) of osteoblasts. These results suggest that boron plays an important role in enhancing osteoblast proliferation in B-MBG scaffold system and DEX-loaded B-MBG scaffolds show great potential as a release system to enhance osteogenic property for bone tissue engineering application.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The search for an effective treatment for septic arthritis is ongoing. Current therapies are expensive since they require repeated joint lavage and long term antibiotic treatment. Local application of antimicrobial drugs is advantageous because high concentrations can be attained at the infection site, although repeated injections increase the risk of superinfection of the joint. Thus, slow release formulations, which have the advantage of local treatment yet single application of the drug, are appealing. Antibiotics used in slow release formulations are selected for tissue compatibility, an appropriate antibacterial spectrum, and stability both during the mixing procedure and within the carrier during the release period. Ideally the carriers should be bioresorbable. Promising reports on the clinical use of poly(methyl methacrylate) (PMMA) mixed with several different antibiotics, and of collagen sponges impregnated with gentamicin, should encourage the search for formulations optimally adapted to veterinary medical requirements.